

<u>Direct Photon Cross Section and</u> <u>Double Longitudinal Asymmetry at</u> <u>PHENIX in 200 GeV pp Collisions</u>

Robert Bennett SUNY at Stony Brook Spin 2008 October 6, 2008

Spin Puzzle

•Birth of the Spin Crisis

- Polarized deep inelastic collision experiments at CERN (EMC & SMC), SLAC (E143, E154, E155), and DESY (HERMES) concluded that the quarks only constituted ~25% of the total spin of the proton!
- The spin must be built on a combination of the quark spin contribution $(\Delta \Sigma)$, the gluon spin (ΔG) and perhaps some orbital angular momentum of the quarks and gluons.

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g$$

•PHENIX

• A major focus of the PHENIX Spin program is to access the gluon contribution to the spin of the proton through measurements of the double longitudinal spin asymmetry (A₁₁).

Accessing **AG** in PP

- Perturbative QCD (pQCD) is the framework in which we interpret our spin results.
- Before we can interpret any asymmetry measurement at PHENIX, we must make sure we are in a regime where pQCD is applicable to our data
- We do this by first measuring the cross section

- Factorization: Separate long range and short range processes
- On of the most important channels used to access ΔG is the direct photon.

$$oldsymbol{\Delta}\mathbf{G} \propto \mathbf{A_{LL}} \otimes \mathbf{A_1^p} \otimes \hat{\sigma}_{\mathbf{pQCD}}$$

•The direct photon asymmetry is linear in ΔG , therefor sensitive to both the magnitude and sign of ΔG .

RHIC Accelerator Facility

Year Energy (c.o.m) [GeV] Luminosity Polarization 2005 200 3.4 pb^-1 50% 2006 200 7.5 pb^-1 57%

- Essential equipment for the polarized proton program at RHIC
 - Siberian Snakes
 - Helical magnets which help to preserve the proton beam polarization through the acceleration process
 - Spin Rotators
 - Magnets located at either end of the major spin experiments at RHIC, which allow each experiment to independently choose the spin orientations needed for their collisions
 - Polarimeters
 - Allow the experiments to monitor the degree of polarization during the run

The PHENIX Detector

- Electromagnetic Calorimeter (EMC)
 - Provide high P, particle trigger.
 - High granularity (~10x10 mrad²)
 - Acceptance: $|\eta| < 0.35$, $\phi = 2 \times \pi / 2$
- Charged Track Systems
 - Drift Chamber (DC) and Pad Chambers (PC)
- Beam Beam Counters (BBC)
 - Collision counters
 - Provide minimum bias trigger
 - Longitudinal vertex determination
 - Relative Luminosity
- Zero Degree Calorimeter (ZDC)
 - Hadronic Calorimeter
 - Used in Relative Luminosity Measurements
 - Used in combination with the Shower Max Detector for Local Polarimetry

- 2 partonic processes produce direct photons: Quark gluon Compton & qqbar annihilation
 - In pp collisions the Quark-Gluon Compton process dominates.
- "golden channel"
 - Theoretically clean signal
 - Linear in ΔG
- Independent, complementary measurement of ΔG
- Looking for isolated photons will help increase the signal to background
 - But quite difficult to measure due to the large decay photon back ground

Isolated Photons

- Define a cone a around a prospective direct photon. $\alpha = 0.5 rad$
- We then look for neutral particle energy deposited in the EMC and charged particle momentum, found by the DC, inside the cone.
- The following cut is then made:

$$\sum_{i} E_{i}^{neutral} + \sum_{i} P_{i}^{charged} < 0.1 \times E_{\gamma}$$

- If sufficiently energetic particles are found in the proximity of the prospective photon, it is no longer a direct photon candidate
- The Isolation cut serves to purify our photon sample.
- Remaining hadronic contamination can be estimated by Monte Carlo simulations

Decay Photon Background

$$m n_{\pi^0}^{iso}$$

- The first type of background to consider are decay photons in the PHENIX acceptance, but still passing the isolation cut
- Start with the isolated photon sample and create invariant mass pairs π^0
- There is almost zero combinatorial background. So we simply remove photons from our sample inside π^0 mass window $(\pi^0 \pm 30 MeV)$

- Also included in isolated photon sample, are hadronic decays where the partner photon lands in a dead/masked region or misses PHENIX completely
- This number is estimated by first counting the number of isolated pi0 pairs in PHENIX and scaling this number by the 1Tag/2Tag ratio (R) obtained from fast MC
- Finally the number of eta, omega, etc... can be estimated by knowing the number of isolated pions

Direct Photon Cross Section

Isolation Cut

Subtraction method

$$N_{direct\gamma}^{iso} = N_{incl\gamma}^{iso} - (n_{\pi}^{asymm} + N_{\pi}^{isopair}R) - A(1+R)N_{\pi}^{isopair}$$

$$N_{direct\gamma} = N_{incl\gamma} - N_{\pi}(R+1) - A(1+R)N_{\pi}$$

- •The direct photon cross section was measured in Run5 by two methods (Isolation cut & Statistical Subtraction).
- Consistent with theory and eachother over several orders of magnitude
- •Run 6 analysis is ongoing

Evaluation of A and

Background Correction

 We define the double longitudinal asymmetries (A_{LL})as the difference between reaction cross sections observed when the colliding proton spins are aligned compared to anti-aligned, over the sum.

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} A_{LL} = \frac{\epsilon}{\epsilon P_b P_y} \frac{N_{++}/L_{++} - N_{+-}/L_{+-}}{N_{++}/L_{++} + N_{+-}/L_{+-}} = \frac{1}{P_Y P_B} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

$$R = \frac{L^{++}}{L^{+-}}$$

$$A_{LL}(sig) = \frac{A_{LL}(iso - n_{\pi^0}) - rA_{LL}^{bg}}{1 - r}$$

$$r = \frac{N_{bg}}{N_{iso-n_{\pi^0}}}$$

$$\Delta A_{LL}(sig)^2 = \frac{\Delta A_{LL}^2(iso - n_{\pi^0}) + r^2 \Delta A_{LL}^2(bg)}{(1 - r)^2}$$

<u>Direct Photon</u> <u>Asymmetry Results</u>

Pt	"r" Isolate Photon	"r" (no isolationcut) Statistical Subtraction
"5-6"	0.660	0.79
"6-7"	0.529	0.74
"7-8"	0.432	0.7
"8-10"	0.320	0.64
"10-12"	0.183	0.54
"12-15"	0.104	0.44

- The direct photon A_{LL} is measure and for the Run6 data set (7pb^-1 57% pol)
- We use the technique of bunch shuffling to confirm any systematic uncertainties are small compared to the statistical error
 - Randomly assign spin orientations to collisions
 - Measure A_{LL} and compare resulting fits to a standard χ^2 distribution
- We confirmed the utility of the isolation cut, as evidenced in the comparison of the dilution factor measured with the isolation cut and without.
- At the moment we are limited by statistics, so it is difficult to make a constraint of ΔG with the direct photon

- 1) Dilution Factor (r): It may be tough to squeeze more out of the dilution factor
- 2) Uncertainty of the background asymmetry:
 - We know it is small from the pion and eta analyses, can we assume it to be zero?
 - Convolution of the pion result with its production spectrum
 - STAR Jet Result
- 3) Luminosity: Run 9 and beyond
 - Even with a good Run 9 data set we will want more 200 GeV
 - Heavy Ion baseline

Projections for Future Runs

Projection for Run9 25 pb⁻¹ 70% Pol.

PHENIX Wishlist 100 pb⁻¹ 70% Pol.

- A measurement equivalent in statistics to the Run6 neutral pion result is a ways off
- A good measurement is in our reach, perhaps in the upcoming Run9 data set.

Summary

Pauli and Bohr performing early spin experiments in Sweden in 1955 Photograph by Erik Gustafson

- We have quite a difficult measurement on our hands
- There is steady progress from the previous measurement
 - Factor of 2 decrease in uncertainties
 from Run 5 to Run 6
- Techniques were developed to treat the back ground
 - Isolation makes a significant contribution
 - New methods are are being explored
- A measurement which provides a meaningful constraint on the gluon polarization is not out of reach
 - Luminosity

Backup

Isolated Photon Signal Fraction

Pi0 Background

- I found the pi0 background via three methods
- Fit (gaus+pol1)
- Fit (gaus+pol2)
- Sum Peak (60 Mev mass window around pion peak) Sum wings
- All three methods yielded similar results at low Pt,(within 1%).
- I will use Peak-wings for consistency